Skip to main content
This guide walks you through creating a complete MCP server that supports OpenAI Apps SDK widgets, enabling rich interactive experiences in ChatGPT and other OpenAI-powered applications.

What You’ll Build

By the end of this guide, you’ll have:
  • A fully functional MCP server with Apps SDK support
  • Automatic widget registration from React components
  • Tools that return interactive widgets
  • Production-ready configuration

Prerequisites

  • Node.js 18+ installed
  • Basic knowledge of TypeScript and React
  • Familiarity with MCP concepts (see MCP 101)

Step 1: Create Your Project

The easiest way to start is using the Apps SDK template:
npx create-mcp-use-app my-apps-sdk-server --template apps-sdk
cd my-apps-sdk-server
This creates a project structure:
my-apps-sdk-server/
├── resources/              # React widgets go here
│   └── display-weather.tsx # Example widget
├── index.ts               # Server entry point
├── package.json
├── tsconfig.json
└── README.md

Step 2: Understanding the Server Setup

Let’s examine the server entry point (index.ts):
import { createMCPServer } from "mcp-use/server";

const server = createMCPServer("my-apps-sdk-server", {
  version: "1.0.0",
  description: "MCP server with OpenAI Apps SDK integration",
  // Optional: Set baseUrl for production CSP configuration
  baseUrl: process.env.MCP_URL || "http://localhost:3000",
});

// Add your tools, resources, and prompts here
// ...

// Start the server
server.listen().then(() => {
  console.log("Server running on http://localhost:3000");
});

Key Configuration Options

  • baseUrl: Required for production. Used to configure Content Security Policy (CSP) for Apps SDK widgets
  • version: Server version for client discovery
  • description: Human-readable server description

Step 3: Create Your First Widget

Widgets are React components in the resources/ folder. They’re automatically registered as both MCP tools and resources. Create resources/user-profile.tsx:
import React from "react";
import { z } from "zod";
import { useWidget } from "mcp-use/react";

// Define the props schema using Zod
const propSchema = z.object({
  name: z.string().describe("User's full name"),
  email: z.string().email().describe("User's email address"),
  avatar: z.string().url().optional().describe("Avatar image URL"),
  role: z.enum(["admin", "user", "guest"]).describe("User role"),
  bio: z.string().optional().describe("User biography"),
});

// Export metadata for automatic registration
export const widgetMetadata = {
  description: "Display a user profile card with avatar and information",
  inputs: propSchema,
};

type UserProfileProps = z.infer<typeof propSchema>;

const UserProfile: React.FC = () => {
  // useWidget hook provides props from Apps SDK
  const { props, theme } = useWidget<UserProfileProps>();
  const { name, email, avatar, role, bio } = props;

  const bgColor = theme === "dark" ? "bg-gray-800" : "bg-white";
  const textColor = theme === "dark" ? "text-white" : "text-gray-900";
  const borderColor = theme === "dark" ? "border-gray-700" : "border-gray-200";

  return (
    <div
      className={`max-w-md mx-auto ${bgColor} ${textColor} rounded-lg shadow-lg border ${borderColor} p-6`}
    >
      <div className="flex items-center space-x-4 mb-4">
        {avatar ? (
          <img
            src={avatar}
            alt={name}
            className="w-16 h-16 rounded-full object-cover"
          />
        ) : (
          <div className="w-16 h-16 rounded-full bg-blue-500 flex items-center justify-center text-white text-2xl font-bold">
            {name.charAt(0).toUpperCase()}
          </div>
        )}
        <div className="flex-1">
          <h2 className="text-xl font-bold">{name}</h2>
          <p className="text-sm opacity-75">{email}</p>
        </div>
        <span
          className={`px-3 py-1 rounded-full text-xs font-semibold ${
            role === "admin"
              ? "bg-red-500 text-white"
              : role === "user"
              ? "bg-blue-500 text-white"
              : "bg-gray-500 text-white"
          }`}
        >
          {role}
        </span>
      </div>
      {bio && (
        <div className="mt-4 pt-4 border-t border-gray-300">
          <p className="text-sm">{bio}</p>
        </div>
      )}
    </div>
  );
};

export default UserProfile;

How Automatic Registration Works

When you call server.listen(), the framework:
  1. Scans the resources/ directory for .tsx files
  2. Extracts widgetMetadata from each component
  3. Registers a tool with the filename as the name (e.g., user-profile)
  4. Registers a resource at ui://widget/user-profile.html
  5. Builds the widget for Apps SDK compatibility
No manual registration needed!

Step 4: Add Traditional MCP Tools

You can mix automatic widgets with traditional tools:
// Fetch user data from an API
server.tool({
  name: "get-user-data",
  description: "Fetch user information from the database",
  inputs: [
    { name: "userId", type: "string", required: true },
  ],
  cb: async ({ userId }) => {
    // Simulate API call
    const userData = {
      name: "John Doe",
      email: "[email protected]",
      avatar: "https://api.example.com/avatars/john.jpg",
      role: "user",
      bio: "Software developer passionate about AI",
    };

    return {
      content: [
        {
          type: "text",
          text: `User data retrieved for ${userId}`,
        },
      ],
      structuredContent: userData,
    };
  },
});

// Display user profile using the widget
// The LLM can now call 'user-profile' tool with the data

Step 5: Configure Apps SDK Metadata

For production widgets, you may want to customize Apps SDK metadata. You can do this manually:
server.uiResource({
  type: "appsSdk",
  name: "custom-widget",
  title: "Custom Widget",
  description: "A custom widget with specific configuration",
  htmlTemplate: `<!DOCTYPE html>...`, // Your HTML
  appsSdkMetadata: {
    "openai/widgetDescription": "Interactive data visualization",
    "openai/widgetCSP": {
      connect_domains: ["https://api.example.com"],
      resource_domains: ["https://cdn.example.com"],
    },
    "openai/toolInvocation/invoking": "Loading widget...",
    "openai/toolInvocation/invoked": "Widget ready",
    "openai/widgetAccessible": true,
    "openai/resultCanProduceWidget": true,
  },
});
However, with automatic registration, metadata is generated automatically based on your widgetMetadata.

Step 6: Testing Your Server

Start the Development Server

npm run dev
This starts:
  • MCP server on port 3000
  • Widget development server with Hot Module Replacement (HMR)
  • Inspector UI at http://localhost:3000/inspector

Test in Inspector

  1. Open http://localhost:3000/inspector
  2. Navigate to the Tools tab
  3. Find your user-profile tool
  4. Enter test parameters:
    {
      "name": "Jane Smith",
      "email": "[email protected]",
      "role": "admin",
      "bio": "Product manager and design enthusiast"
    }
    
  5. Click Execute to see the widget render

Test in ChatGPT

  1. Configure your MCP server in ChatGPT settings
  2. Ask ChatGPT: “Show me a user profile for Jane Smith, email [email protected], role admin”
  3. ChatGPT will call the user-profile tool and display the widget

Step 7: Advanced Widget Features

Accessing Tool Output

Widgets can access the output of their own tool execution:
const MyWidget: React.FC = () => {
  const { props, output } = useWidget<MyProps, MyOutput>();

  // props = tool input parameters
  // output = additional data returned by the tool
  return <div>{/* Use both props and output */}</div>;
};

Calling Other Tools

Widgets can call other MCP tools:
const MyWidget: React.FC = () => {
  const { callTool } = useWidget();

  const handleAction = async () => {
    const result = await callTool("get-user-data", {
      userId: "123",
    });
    console.log(result);
  };

  return <button onClick={handleAction}>Fetch Data</button>;
};

Persistent State

Widgets can maintain state across interactions:
const MyWidget: React.FC = () => {
  const { state, setState } = useWidget();

  const savePreference = async () => {
    await setState({ theme: "dark", language: "en" });
  };

  return <div>{/* Use state */}</div>;
};

Step 8: Production Configuration

Environment Variables

Create a .env file:
PORT=3000
MCP_URL=https://your-server.com
NODE_ENV=production

Build for Production

npm run build
npm start
The build process:
  • Compiles TypeScript
  • Bundles React widgets for Apps SDK
  • Optimizes assets
  • Generates production-ready HTML templates

Content Security Policy

When baseUrl is set, CSP is automatically configured:
const server = createMCPServer("my-server", {
  baseUrl: process.env.MCP_URL, // Required for production
});
This ensures:
  • Widget URLs use the correct domain
  • CSP includes your server domain
  • Works behind proxies and custom domains

Step 9: Deployment

Deploy to mcp-use Cloud

The easiest deployment option:
# One command deployment
npx @mcp-use/cli deploy
See the Deployment Guide for details.

Manual Deployment

  1. Build your server: npm run build
  2. Set environment variables
  3. Deploy to your hosting platform (Railway, Render, etc.)
  4. Update MCP_URL to your production domain

Best Practices

1. Schema Design

Use descriptive Zod schemas to help LLMs understand your widgets:
// ✅ Good: Clear descriptions
const propSchema = z.object({
  city: z
    .string()
    .describe("The city name (e.g., 'New York', 'Tokyo')"),
  temperature: z
    .number()
    .min(-50)
    .max(60)
    .describe("Temperature in Celsius"),
});

// ❌ Bad: No descriptions
const propSchema = z.object({
  city: z.string(),
  temp: z.number(),
});

2. Theme Support

Always support both light and dark themes:
const { theme } = useWidget();
const bgColor = theme === "dark" ? "bg-gray-900" : "bg-white";
const textColor = theme === "dark" ? "text-white" : "text-gray-900";

3. Error Handling

Handle missing or invalid props gracefully:
const MyWidget: React.FC = () => {
  const { props } = useWidget<MyProps>();

  if (!props.requiredField) {
    return <div>Required data missing</div>;
  }

  return <div>{/* Render widget */}</div>;
};

4. Widget Focus

Keep widgets focused on a single purpose:
// ✅ Good: Single purpose
export const widgetMetadata = {
  description: "Display weather for a city",
  inputs: z.object({ city: z.string() }),
};

// ❌ Bad: Too many responsibilities
export const widgetMetadata = {
  description: "Display weather, forecast, map, and news",
  inputs: z.object({
    /* too many fields */
  }),
};

Troubleshooting

Widget Not Appearing

Problem: Widget file exists but tool doesn’t appear Solutions:
  • Ensure file has .tsx extension
  • Export widgetMetadata object
  • Export default React component
  • Check server logs for errors

Props Not Received

Problem: Component receives empty props Solutions:
  • Use useWidget() hook (not React props)
  • Ensure widgetMetadata.inputs is a valid Zod schema
  • Verify tool parameters match schema
  • Check Apps SDK is injecting window.openai.toolInput

CSP Errors

Problem: Widget loads but assets fail with CSP errors Solutions:
  • Set baseUrl in server config
  • Add external domains to CSP whitelist
  • Use HTTPS for all resources
appsSdkMetadata: {
  "openai/widgetCSP": {
    connect_domains: ["https://api.example.com"],
    resource_domains: ["https://cdn.example.com"],
  },
}

Next Steps

Example: Complete Server

Here’s a complete example combining everything:
import { createMCPServer } from "mcp-use/server";

const server = createMCPServer("weather-app", {
  version: "1.0.0",
  description: "Weather app with interactive widgets",
  baseUrl: process.env.MCP_URL || "http://localhost:3000",
});

// Traditional tool to fetch weather data
server.tool({
  name: "fetch-weather",
  description: "Fetch current weather for a city",
  inputs: [
    { name: "city", type: "string", required: true },
  ],
  cb: async ({ city }) => {
    // Simulate API call
    const weather = {
      city,
      temperature: 22,
      condition: "sunny",
      humidity: 65,
    };

    return {
      content: [
        {
          type: "text",
          text: `Weather for ${city}: ${weather.condition}, ${weather.temperature}°C`,
        },
      ],
      structuredContent: weather,
    };
  },
});

// Widgets in resources/ folder are automatically registered
// - resources/display-weather.tsx
// - resources/weather-forecast.tsx

server.listen().then(() => {
  console.log("Weather app server running!");
});

Summary

You’ve learned how to:
  • ✅ Create an MCP server with Apps SDK support
  • ✅ Use automatic widget registration
  • ✅ Build React widgets with useWidget hook
  • ✅ Configure Apps SDK metadata
  • ✅ Test and deploy your server
Your MCP server is now ready to provide rich interactive experiences in ChatGPT!